Тактовая частота процессора, что это, в чем измеряется CPU frequency, какая лучше

Если брать сугубо специфические характеристики процессоров, то тактовая частота является наиболее известным параметром. Поэтому необходимо конкретно разобраться с этим понятием. Также, в рамках данной статьи, мы обсудим понимание тактовой частоты многоядерных процессоров, ведь там есть интересные нюансы, которые знают и учитывают далеко не все.

Достаточно продолжительное время разработчики делали ставки именно на повышение тактовой частоты, но со временем, «мода» поменялась и большинство разработок уходят на создание более совершенной архитектуры, увеличения кэш-памяти и развития многоядерности, но и про частоту никто не забывает.

Что такое тактовая частота

Процессор — это чип, который решает простейшие математические задачи. Ведь именно на них построена работа каждой программы. Каждую секунду CPU высчитывает, к примеру:

  • изменение положения курсора на экране;
  • декодирование видеосигнала (при воспроизведении медиа);
  • расчёт положения теней 3D-объектов (в запущенных видеоиграх);
  • расчёт количества кластеров, необходимый для сохранения файла на жёстком диске.

И таких операций процессор ежесекундно выполняет миллионы. И какое количество «примеров» (в форме двоичного кода) он способен решить за секунду, как раз и зависит от тактовой частоты, что в технических характеристиках указывается как cpu frequency.

Измеряется частота в герцах. Нужно учесть, что чем она выше, тем больше тепла CPU выделяет при нагрузке. Средняя частота современных процессоров колеблется в диапазоне от 1,8 до 4,5 гигагерц (GHz).

То есть такие кристаллы способны за одну секунду генерировать от 1,8 до 4,5 миллиардов импульсов.

Отличишь кринж от краша? Пройди увлекательный тест и узнай это!

Сегодня мы многое поняли

Видишь новую игру авторства Electronic Arts — жди внутри движок Frostbite и высокие требования к процессору при скромных аппетитах в отношении видеокарты. Видишь игру про «сталкеров» — готовь флагманский видеоускоритель и CPU или терпи пониженную детализацию графики. Захотел побыть Бэтмэном — готовь производительную видеокарту, а приключения красивой Лары Крофт чреваты ещё и неуёмным расходом видеопамяти.
Любишь Battlefield — люби и Need for Speed (производительность-то одинаковая), но будь готов к тому, что для по-настоящему классной графики в гоночных играх понадобится не менее крутая видеокарта, чем для шутеров.

Старые «песочницы» Ubisoft — прожорливые во всём «песочницы» Ubisoft. В новых играх уже появляется возможность сэкономить на процессоре.

GTA уже давно перестала быть «кривым портом с консолей» — для неё достаточно среднестатистического компьютера с графическим ускорителем о трёх-четырёх гигабайтах видеопамяти. Стратегии на ПК — вещь непредсказуемая: часть из них конструируется бездарными студиями, поэтому игры «тормозят» на любых комплектующих, часть представляет собой переделку старых игр, для которых мощное железо не нужно.

И только массовые онлайн-игры (особенно pay-to-win) примут ПК-игрока в распростертые объятия с железом почти любого уровня. Но все эти выводы не отвечают на главный вопрос:

На что влияет частота процессора

Частота процессора прямо влияет на его производительность. Чем она выше — тем больше операций способен «обработать» CPU за одну секунду. Например, конвертирование видео Pentium 4 на частоте в 1,5 ГГц выполняет за 10 минут. Этому же процессору, но с частотой в 3 ГГц, на эту же операцию потребуется примерно в 2 раза меньше времени — порядка 5 минут.

Но итоговая производительность зависит не только от частоты. На неё существенно влияют:

  • Поддерживаемые наборы инструкций (SSE, SSE2, AVX и так далее). В CPU есть встроенная микропрограмма, которая позволяет выполнять простые расчёты по нескольким различным алгоритмам. Это позволяет более эффективно использовать ресурс процессора. Простой пример: сначала система анализирует сложную функцию, далее — упрощает её, разделив на несколько простых. И на итоговый расчёт потребуется меньше времени.

  • Встроенная кэш-память. Именно туда загружается обрабатываемая прямо сейчас информация. Чем её больше и пропускная способность памяти выше, тем быстрее выполняет расчёты процессор.

  • Количество ядер. Одноядерный процессор одновременно может выполнять только одну задачу. Соответственно, если запустить сразу 2 программы, то он выполняет для них расчёты поочерёдно. Многоядерные CPU могут обрабатывать одновременно несколько потоков.

Максимальная частота современных CPU — изменяемая. То есть она регулируется в зависимости от требуемого количества проводимых вычислений. Для чего это делается? Чтобы уменьшить количество потребляемого тока, а также температуру нагрева.

Подробнее: как узнать температуру процессора

Существует ещё такое понятие, как «тротлинг». Это принудительное снижение максимальной частоты процессора из-за его перегрева. Является защитной функцией, предотвращающей перегрев CPU (из-за высокой температуры кремний, из которого изготавливаются процессоры, деградирует).

М или Ж? Пройди тест и узнай кто ты в быту: мужчина ты или женщина

Тестирование в синтетических программах: CPU-Z

Теперь, когда мы разобрались с поведением двух экземпляров в стресс-тесте, предлагаю сравнить производительность процессоров в CPU-Z.

6 ядер

4 ядра

Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.

Результаты «математического бенчмарка» подтвердились. Четыре разогнанных ядра хоть и обошли шесть маломощных ядер в однопоточной производительности, но серьезно уступили во многоядерной производительности. Медленные шесть ядер обходят четыре быстрых на 12.5%, данная разница была известна еще заранее из «математического бенчмарка»: разница между 18 и 16 составляет 12.5%.

Тестирование CPU-Z

Как узнать тактовую частоту процессора

Узнать тактовую процессора можно следующими способами:

  1. Нажать на клавиатуре сочетание клавиш Win+i

  2. Нажмите на “Система”

  3. Затем переместитесь в самый низ левого списка и выберите “О программе”. Там и будет указана тактовая частота процессора

  1. Также вы можете открутить крышку системника, снять кулер CPU и там посмотреть тактовую частоту процессора, стерев термопасту.
  2. На некоторых моделях (преимущественно от Intel) частота указывается на термоинтерфейсе (металлическая «крышка» процессора).

  • С помощью специальных программ. Например, AIDA. Нужно в боковом меню раскрыть пункт «Системная плата», выбрать «ЦП». А в подменю «Системная плата» ещё указывается частота шины процессора (FSB). Эта информация пригодится при разгоне CPU.

  • С помощью программы CPU-Z. Она предоставляет максимум информацию об установленном CPU. То есть можно узнать не только частоту, но ещё и количество ядер, объём кэш-памяти.

Волга или Победа? А ты знаком с советским автопромом? Проверь себя в увлекательном тесте!

Тестирование энергопотребления / уровня шума / температурных показателей

Тестирование процессоров проводилось посредством 10-минутного теста OCCT версии 5.5.7 с использованием AVX2 инструкций.

Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.

OCCT 5.5.7

Таким образом, в тестировании OCCT процессор с шестью медленными ядрами оказался более «прохладным», чем процессор с разогнанными четырьмя ядрами. Но результаты данного тестирования нельзя интерпретировать на якобы Ryzen 5 3500X и Ryzen 3 3100/3300X. Все процессоры уникальны и данный тест лишь показывает серьезно возросшие показатели тепловыделения при небольшом разгоне, что характерно для всех процессоров Ryzen.

Нужно ли изменять тактовую частоту

В современных материнских платах предусмотрена функция, позволяющая незначительно менять тактовую частоту процессора. Её можно как понизить, так и увеличить. Для чего это может потребоваться? Либо для снижения нагрева, если кулер не справляется с охлаждением, либо для увеличения производительности.

В некоторых CPU таким образом можно повысить частоту от первоначальной даже на 30 – 40%.

Нужно ли менять на своём компьютере частоту процессора? Иногда это, действительно, позволяет существенно увеличить производительность без каких-либо вложений. Нужно лишь учесть, что при этом повышается нагрев CPU. И если его температура часто будет повышаться вплоть до 90 – 100 градусов, то это может привести к его выходу из строя.

То есть «оверлокингом» следует заниматься только тем пользователям, которые понимают, для чего они делают и учитывают все возможные последствия.

На ноутбуках повышать частоту категорически не рекомендуется. В них системы охлаждения менее эффективны, чем на ПК. И порой процессор даже на базовых частотах перегревается.

А вот снизить — можно, если такую возможность предоставляет встроенный BIOS. Но учитывать, что производительность при этом снизится на те же 15 – 20%.

Если же процессор работает стабильно, его мощности пользователю достаточно, то лучше настройки частоты не менять. Также стоит упомянуть, что в современных CPU предусмотрена функция автоматического разгона.

Например, у Intel эта технология именуется как «Turbo-Boost». То есть CPU автоматически повышает базовую частоту при выполнении ресурсоёмких расчётов, но только если нагрев кристалла при этом не критический (не превышает 85 – 90 градусов).

Пройди тест на тему «Легенды 90-х» вспомни, что из этого было у тебя?

Артём Саннников

Процессор — это один из главных компонентов ПК, который выполняет все основные вычисления во время работы ПК.

CPU (Central Processing Unit) — центральное вычислительное устройство

APU (Accelerated Processing Unit) — ускоренное вычислительное устройство

Процессор представляет собой сложную микросхему, которая состоит из множества блоков. От количества и параметров блоков, зависит общая производительность процессора. И совокупность этих блоков и их конфигурация, называется — архитектура процессора.

Характеристики процессора:

  1. Производительность и модель процессора
  2. Тип разъема для соединения с материнской платой (сокет)
  3. Количество физических ядер
  4. Основная частота работы процессора, множитель частоты
  5. Частота шины процессора
  6. Встроенный контроллер памяти
  7. Поддерживаемый тип памяти и ее параметры
  8. Размер внутренней памяти процессора
  9. Наличие и параметры встроенного видео ядра
  10. Мощность тепловыделения
  11. Тип упаковки

Производительность и модель процессора

Фирмы Intel и AMD — процессоры не выпускают они их только разрабатывают. А выпуском уже занимаются другие фирмы, по заказу этих фирм разработчиков.

Когда создается новый процессор, на новой архитектуре — этой архитектуре присваивается свое имя для ее идентификации. И далее уже внутри этой архитектуры создается, модельный ряд процессоров: слабых, средних и сильных по производительности.

Разделение процессоров чаще всего происходит по количеству ядер и частоте, и таким образом получается ассортимент предложений, новой архитектуры для создания разных по производительности компьютеров, на основе этой архитектуре.

Тип разъема для соединения с материнской платой (сокет)

Разъема для соединения процессора с материнской платой, чаще всего называют сокетом, и он определяет внешние размеры процессора, количество контактов, способ крепления процессора у материнской плате и способ крепления кулера на процессор.

Этот параметр необходимо учитывать при выборе процессора и материнской платы, то есть сокет процессора должен быть таким же как сокет материнской платы.

Количество физических ядер

Ядро процессора — это набор блоков, который может самостоятельно обрабатывать информацию.

1 ядро = 1 поток вычислений

Чем больше в процессоре ядер, тем он будет более производительный. При определенных условиях, на одном физическом ядре, может выполняться два потока вычислений:

1 ядро = 2 потока вычислений

В таких моделях процессоров, производитель, отдельно указывает количество физических ядер, и отдельное количество логических, которых в два раза больше чем физических.

Такая технология используется в некоторых процессорах фирмы Intel (называется эта технология Hyper Threading).

Тактовая частота работы процессора

Тактовая частота — величина, характеризующая количество операций, выполняемых процессором за единицу времени. Измеряется в герцах (Гц).

Чем выше тактовая частота, тем более производительный процессор. Но это работает только внутри процессоров, одной серии.

Рассмотрим пример:

Intel Core i5-2400 3.10GHz/6MB

Intel Core i3-2120 3.3GHz/3MB

Можно подумать, что процессор серии i3 с частотой 3.3GHz, будет более производительный чем, процессор серии i5 с частотой 3.10GHZ. На самом деле это не так, производительность серии Core i5 будет больше. так как у него лучше другие параметры. У него больше физических ядер и у него больший объем кэша.

Современные процессоры могут самостоятельно повышать или понижать частоту в зависимости от нагрузки на процессор, и это сделано для более эффективного использования мощности процессора. И потребление им электроэнергии.

Таким образом кроме основной частоты, в характеристиках так же указывают и максимальную частоту, до которой процессор может самостоятельно увеличивать этот параметр:

Частота работы процессора: 3,3 ГГц (до 3,9ГГц)

У фирмы Intel такая технология называется: Turbo Boost, а у фирмы AMD: Turbo CORE.

С параметром частоты так же связан, такой параметр, как коэффициент умножения.

Коэффициент умножения: заблокирован/разблокирован

Этот параметр обычно указан в подробном описании процессора, и физически он является одним из основных параметров, который определяет итоговую частоту процессора.

В простых моделях процессора — этот коэффициент зафиксирован на одном значении т.е заблокирован, в процессорах для продвинутых пользователей — этот коэффициент разблокирован. И таким образом, пользователь может самостоятельно регулировать — частоту процессора.

Частота шины процессора (системная шина)

Частота шины определяет скорость обмена данными между ядрами и чипсетом материнской платы, а также другими боками внутри процессора.

Указывается в мегагерцах или трансферов в секунду.

AMD FX-8120: HT 5.2 GT/s

Intel Core i5 2500: DMI 5GT/s

Intel pentium Dual-Core E5700: FSB 800MHz

Чем больше производительность шины данных, тем это лучше для производительности компьютера. Для современных процессоров — этот параметр утратил свою актуальность, как это было в процессорах предыдущих поколений.

Это связано с тем, что производительность шины данных в современных процессорах очень большая, и она уже не может понижать общую производительность компьютера, как это могло быть в процессорах предыдущих поколений, с более низкой частотой шины данных.

Встроенный контроллер памяти

Есть у всех современных процессоров. Он определяет тип оперативной памяти, количество каналов, штатные частоты для работы процессора с памятью.

Для домашнего ПК достаточно двухканального контроллера памяти, продвинутые пользователи выбирают процессоры с трех и четырехканальным контроллером.

Поддерживаемый тип памяти и ее параметры

Этот параметр указывает, с какой оперативной памятью расчитан работать процессор.

Тип, частота: DDR3-1066/1333

Макс.объем: 32 GB

Размер внутренней памяти процессора (кэш)

Кэш процессора — скоростная память, встроенная в ЦП и являющаяся буфером между ОЗУ и процессором.

Кэш хранит, те данные, которые процессор чаще всего использует в текущий момент, и процессору не нужно обращаться за этими данными к оперативной памяти, которая работает с меньшей скоростью чем кэш процессора. И таким образом повышается общая производительность, процессора.

В современных процессорах ,кэш разделен на три уровня:

  • Кэш L1: 64 Кб x4
  • Кэш L2: 256 Кб x4
  • Кэш L3: 6 Мб

Объем кэша LI и L2 — определяется параметрами архитектуры процессора, а L3 — может быть более менее произвольным и сравним с другими процессорами. Поэтому в характеристиках процессора чаще всего указан, объем кэша 3-го уровня, чем он будет больше тем лучше для производительности процессора. И обычно более мощные процессоры — имеют больший объем кэша 3-го уровня.

Наличие и параметры встроенного видео ядра

Современные процессоры, в своем составе могут иметь — графическое ядро. Это ядро, обеспечивает обработку и вывод информации на монитор. Эта функция аналогична интегрированной видеокарте, в материнскую плату.

Обычно видео ядро имеет свою частоту работы, которая намного меньше, основной частоты работы процессора. И для работы видео ядра, используется часть оперативной памяти — размер которой определяется в настрйоках материнской платы.

У фирмы Intel такое ядро называется Intel HD Graphics XXXX, а у фирмы AMD — Radeon HD XXXX. Где XXXX — это серии графических ядер, они разные по производительности.

Мощность тепловыделения

TDP или «теплопакет» — величина, показывающая, на отвод какой тепловой мощности должна быть рассчитана система охлаждения процессора.

Intel Core i5-2500: MaxTDP 95W

AMD FX 8120 Black Edition: Max TDP 125W

Многие по ошибке связывают этот параметр с потребляемой мощностью процессора, и используют его при выборе блока питания. Этот параметр необходимо учитывать именно при выборе системы охлаждения процессора.

Потребляемая мощность процессора обычно находится в пределах этого теплового пакета, но она может быть как больше, так и намного меньше этого параметра. Поэтому учитывать его при выборе блока питания, не совсем правильно!

При выборе блока питания можно придерживаться, следующих значений:

Обычно потребляемая мощность процессора находится в пределах 100 Ватт, но для того чтобы у нас был запас мощности, для максимальных нагрузок, этот параметр — теплопакет можно умножить на 2. И уже полученное значение, учитывать при выборе блока питания.

Тип упаковки

Процессор может продаваться ,как с типовой системой охлаждения, так и без нее.

Типовая система охлаждения или кулер — рассчитана на работу процессора, в штатных режимах, то есть без дополнительных настрое пользователя. Такой кулер прост в установке, но может издавать шум при нагрузках на процессор.

Если процессор продается вместе с кулером, то в характеристиках указывается слово «BOX», которое говорит нам о наличии коробки. Внутри которой находится процессор и кулер.

Если слова «BOX» в описании нет, или указано слово «Tray» — это означает, что продается только процессор.

Метки: База знаний, Процессор.

Важность оперативной и кэш памяти при выборе процессора для ноутбука

Еще один принципиально важный для оценки производительности параметр – объем встроенной в процессор кэш-памяти. Дело в том, что обмен информацией между процессорными ядрами и кэш-памятью осуществляется намного быстрее, чем с ОЗУ (оперативной памятью). В результате, чем больше размер кэша, тем быстрее оказывается ваш процессор. Причем в реальных задачах именно большой размер кэша нужен чаще, чем дополнительные ядра или слишком высокая частота. Однако, чем больше размер кэш памяти, тем дороже стоит процессор. Кроме того, увеличение памяти приводит к разогреву процессора.

Если же говорить о конкретной покупке, то при выборе процессора одной серии и линейки для мультимедийных систем и рабочих станций предпочтение нужно отдавать тем, у которых объем кэш памяти больше.

Почему процессоры с турбобустом имеют преимущества?

Основным преимуществом такого процессора является то, что он ускоряет работу компьютера при большой нагрузке. Если вы запускаете видеоигру или требовательное приложение, ваш процессор автоматически увеличивает тактовую частоту наддува и обеспечивает максимальную производительность. Это означает лучшую производительность, когда это важно.

Кроме того, Turbo Boost — это полностью автоматический процесс : ваш процессор разгоняется сам, без какого-либо вмешательства с вашей стороны. Это просто работает, так что каждый получает выгоду, будь то домашний пользователь без опыта работы с компьютером или профессионал, который работает с корпоративными приложениями, требующими большой вычислительной мощности.

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. LOAD_A 8. Это команда сохраняет в ОЗУ данные, скажем, <1100 1000>. Первые 4 бита — код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A — поместить данные 1000 (последние 4 бита команды) в регистр A.
  2. LOAD_B 2. Ситуация, аналогичная прошлой. Здесь помещается число 2 (0010) в регистр B.
  3. ADD B A. Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A.
  4. STORE_A 23. Сохраняем значение регистра A в ячейку памяти с адресом 23.

Вот такие операции нужны, чтобы сложить два числа.

Хранение информации — регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр — минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set — Сброс/Установка).
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Принцип действия RS-триггера

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) — это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Прим. перев. Оперативная память бывает статической и динамической — SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической — конденсаторы. SRAM быстрее, а DRAM дешевле.

Два основных компонента процессора

Устройство управления

Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент — арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.

Существует два типа реализации УУ:

  • УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением — устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
  • УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.

УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.

Арифметико-логическое устройство

Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.

Школа Linux от КРОК

1 апреля, Москва, Беcплатно

tproger.ru

События и курсы на tproger.ru

Большинство логических элементов имеют два входа и один выход.

Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S — выходом, C — переносом (в старший разряд).

Схема арифметического полусумматора

Производители называют Turbo Boost по-разному

Как у AMD, так и у Intel есть технологии, которые контролируют базовую частоту их процессоров и скорости турбобуста. Для своих последних серий компьютерных процессоров (Ryzen 2000 и Ryzen 3000) AMD называет его Precision Boost 2. Вы можете увидеть несколько деталей об этом на скриншоте ниже.

Начиная с Intel Core i5 и i7 второго поколения, Intel использует технологию Intel Turbo Boost v.2.0, а для новейших процессоров Core i7 и i9 — технологию Intel Turbo Boost Max v3.0.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]